Contreras Carmona, Itzel | Universidad Autónoma del Estado de México |
Saldivar, Martha Belem | CINVESTAV-IPN |
Portillo Rodríguez, Otniel | Universidad Autónoma del Estado de México |
Ramirez Rivera, Victor Manuel | Centro de Investigación de Yucatán, AC. |
Gil Antonio, Leopoldo | Tecnológico de Estudios Superiores de Jocotitlán |
https://doi.org/10.58571/CNCA.AMCA.2023.095
Resumen: One of the most popular renewable energy sources is photovoltaic energy; however, its main drawback is the low conversion efficiency. Optimal system operation requires efficient tracking of the maximum power point representing the maximum energy that can be extracted from the photovoltaic system. One of the main problems is the presence of partial shadows. In this scenario, the system’s power presents multiple peaks; a robust control technique is required to properly track the Global Maximum Power Point (GMPP). This paper proposes using a Sliding Mode Controller (SMC) for the GMPP tracking which is a robust strategy for coping with changing environmental conditions and partial shadows. Numerical simulation results show the effectiveness of the proposal.
¿Cómo citar?
Contreras Carmona, Itzel; Saldivar, Martha Belem; Portillo Rodríguez, Otniel; Ramirez Rivera, Victor Manuel; Gil Antonio, Leopoldo. Super Twisting Sliding Mode Control for the Maximum Power Point Tracking in a Photovoltaic System under Partial Shading. Memorias del Congreso Nacional de Control Automático, pp. 544-550, 2023. https://doi.org/10.58571/CNCA.AMCA.2023.095
Palabras clave
Control Discontinuo (modos deslizantes); Sistemas Electrónicos de Potencia
Referencias
- Andrea, C.Q., Gules, R., Romaneli, E.F.R., Pinto, J.n.P., and Gon¸calves, R.C. (2010). Sistema de rejeicao de disturbio e rastreamento H1 e H2 aplicado ao conversor boost usando LMIs. In Research Article Presented in XVlll Brazilian Congress of Automatics, 2010.
- Bouafassa, A., Rahmani, L., and Mekhilef, S. (2015). Design and real time implementation of single phase boost power factor correction converter. ISA transactions, 55, 267–274.
- Chiu, C.S., Ouyang, Y.L., and Ku, C.Y. (2012). Terminal sliding mode control for maximum power point tracking of photovoltaic power generation systems. Solar Energy, 86(10), 2986–2995.
- Evangelista, C., Puleston, P., Valenciaga, F., and Fridman, L.M. (2012). Lyapunov-designed super-twisting sliding mode control for wind energy conversion optimization. IEEE Transactions on industrial electronics, 60(2), 538–545.
- Farzaneh, J., Keypour, R., and Khanesar, M.A. (2018). A new maximum power point tracking based on modified firefly algorithm for pv system under partial shading conditions. Technology and Economics of Smart Grids and Sustainable Energy, 3, 1–13.
- Gil, L. (2019). Control de Convertidores para aplicaciones Fotovoltaicas. Ph.D. thesis, Universidad Autónoma del Estado de México. Facultad de Ingeniería; México.
- Kchaou, A., Naamane, A., Koubaa, Y., and M’sirdi, N. (2017). Second order sliding mode-based mppt control for photovoltaic applications. Solar Energy, 155, 758–769.
- Kota, V.R. and Bhukya, M.N. (2019). A novel global mpp tracking scheme based on shading pattern identification using artificial neural networks for photovoltaic power generation during partial shaded condition. IET Renewable Power Generation, 13(10), 1647–1659.
- Li, X., Wen, H., Hu, Y., Jiang, L., and Xiao, W. (2017). Modified beta algorithm for gmppt and partial shading detection in photovoltaic systems. IEEE Transactions on Power Electronics, 33(3), 2172–2186.
- Lodhi, E., Shafqat, R.N., Kerrouche, K., and Lodhi, Z. (2017). Application of particle swarm optimization for extracting global maximum power point in pv system under partial shadow conditions. International Journal
- of Electronics and Electrical Engineering, 5(3), 223–229.
- Mamarelis, E., Petrone, G., and Spagnuolo, G. (2013). Design of a sliding-mode-controlled sepic for pv mppt applications. IEEE Transactions on Industrial Electronics, 61(7), 3387–3398.
- Meza, H.A., García, J.L.M., and Mora, S.S. (2018). Estrategias de control mppt aplicadas en un convertidor dc/dc tipo boost para sistemas fotovoltaicos. Revista Colombiana de Tecnologías de Avanzada (RCTA), 2(30), 102–108.
- Montoya, D.G., Paja, C.A.R., and Giral, R. (2016). Maximum power point tracking of photovoltaic systems based on the sliding mode control of the module admittance. Electric Power Systems Research, 136, 125–34.
- Pati, A.K. and Sahoo, N. (2016). A new approach in maximum power point tracking for a photovoltaic array with power management system using fibonacci search algorithm under partial shading conditions. Energy Systems, 7(1), 145–172.
- Ruiz, L., Beristaín, J., Sosa, I., and Hernández, J. (2010). Estudio del algoritmo de seguimiento de punto de máxima potencia perturbar y observar. Revista de ingeniería eléctrica, electrónica y computación, 8(1), 17–23.
- Sawant, P.T., Lbhattar, P.C., and Bhattar, C. (2016). Enhancement of pv system based on artificial bee colony algorithm under dynamic conditions. In 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), 1251–1255. IEEE.
- Shenbagaramalakshmi, S. and Punitha, K. (2017). Soft computing technique based mppt algorithms for photovoltaic system. Int J Adv Res Electr Electron Instrum Engg, 6(1), 131–139.
- Sira-Ramirez, H.J. and Silva-Ortigoza, R. (2006). Control design techniques in power electronics devices. Springer Science & Business Media.
- Utkin, V.I. (1977). Variable structure systems with sliding modes. IEEE Transactions on Automatic control, 22(2), 212–222.